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Abstract 

The study of continued fractions has created a great deal of interest among mathematicians for several 

centuries. Various continued fractions have been developed through which we have gained new 

insights upon understanding the behaviour of numbers. In this paper, we will construct a general 

continued fraction for 
2 4k + and using that, we have obtained the rational approximations for some 

of the irrational numbers like 5, 13, 29, 53,...  
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1. Introduction  

The study of irrational numbers has been done more than two millennia ago. Ever since, Pythagoreans 

discovered the irrational numbers, its structure and properties were studied extensively by 

mathematicians spanning several centuries to this day. The concept of continued fractions was 

popularized by the great Swiss mathematician Leonhard Euler, who was master of proving exciting 

equations covering all branches of mathematics. In this paper, we will derive the continued fraction 

expansion of the expression of the form 
2 4k + and using this result, we will arrive the rational 

approximations of three irrational numbers√5 , √13 , √29 . 
 

2.DEFINITIONS AND NOTATIONS 

2.1 A finite continued fraction is an expression of the form 

𝑎0 +
1

𝑎1 +
1

𝑎2 +
                 ⋱  

                           +
1

𝑎𝑛−1 +
1

𝑎𝑛

 

              (1) 

where 𝑎0, 𝑎1,  …  𝑎𝑛 are real numbers and  𝑎1, 𝑎2,  … 𝑎𝑛 are positive.  The 𝑎𝑖 are called the partial 

quotients of the continued fraction. If the partial quotients are all integers, then the continued fraction 

is simple. We use the notation [𝑎0; 𝑎1,  … 𝑎𝑛] to represent the continued fraction given in equation (1). 

When 𝑛 = 0 we write  [𝑎0] 
2.2 For 1 ≤ 𝑘 ≤ 𝑛, the 𝑘𝑡ℎ convergent 𝐶𝐾 of a continued fraction [𝑎0; 𝑎1, 𝑎2, … . 𝑎𝑛] is the continued 

fraction 

𝐶𝑘 =  [𝑎0; 𝑎1, 𝑎2, … . . 𝑎𝑘] 
We extend this definition to include 𝑘 = 0 and so we set 𝐶0 = 𝑎0. 
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We now prove the following theorem.  

3. Theorem 1 

If k is a positive integer, then the continued fraction expansion for √𝑘2 + 4 is given by 

√𝑘2 + 4 = 𝑘 +
2

𝑘+
1

𝑘+
1

𝑘+
1

𝑘+
1

𝑘+⋯

     (2) 

Proof: Consider, (
𝑘−√𝑘2+4

2
) (

𝑘+√𝑘2+4

2
) = –1 

  (
𝑘−√𝑘2+4

2
) = 

−1

(
𝑘+√𝑘2+4

2
)

      (3) 

                     = 
−1

𝑘−(
𝑘−√𝑘2+4

2
)

 

                   = 
−1

 𝑘+
1

(
𝑘+√𝑘2+4

2
)

 by (3) 

                     = 
−1

𝑘+
1

𝑘−(
𝑘−√𝑘2+4

2
)

 

= 
−1

𝑘+
1

𝑘+
1

(
𝑘+√𝑘2+4

2
)

 

= 
−1

𝑘+
1

𝑘+
1

𝑘+
1

𝑘+
1

𝑘+⋯

  

                 √𝑘2 + 4 = 𝑘 +
2

𝑘+
1

𝑘+
1

𝑘+
1

𝑘+
1

𝑘+⋯

 

 

This proves (2) and hence completes the proof.  

 

4. Theorem 2 

For any positive integer k, the continued fraction  𝑘 +
2

𝑘+
1

𝑘+
1

𝑘+
1

𝑘+⋯

  converges to √𝑘2 + 4. 

Proof: Let  𝑥 = 𝑘 +
2

𝑘+
1

𝑘+
1

𝑘+
1

𝑘⋯

 

𝑥 − 𝑘 =
2

𝑘 +
1

𝑘 +
1

𝑘 +
1

𝑘 ⋯

 

                 
𝑥−𝑘

2
=

1

𝑘+
1

𝑘+
1

𝑘+
1

𝑘⋯

         (4) 

                
𝑥−𝑘

2
=

1

𝑘+
𝑥−𝑘

2

           by (4) 

                     
𝑥−𝑘

2
=

2

2𝑘+𝑥−𝑘
=

2

𝑥+𝑘
 

        (𝑥 − 𝑘)(𝑥 + 𝑘) = 4 

            𝑥2 − 𝑘2  = 4 
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                       𝑥 = √𝑘2 + 4 

Thus the continued fraction 𝑘 +
2

𝑘+
1

𝑘+
1

𝑘+
1

𝑘⋯

 converges to √𝑘2 + 4. This completes the proof. 

We now present three corollaries as verification of Theorem 2.  

 

4.1 Corollary 1 

√5 = 2.2360679 

Proof:  Let k=1. Then √𝑘2 + 4= √12 + 4= √5 = 2.2360679 

 

By (2) of Theorem 1,√12 + 4 = √5 = 1 +
2

1+
1

1+
1

1+
1

1+
1

1+⋯

 

Extracting the consecutive convergents, we obtain  

 𝑐0 = 1 

 𝑐1 = 1 +
2

1
= 3 

 𝑐2 = 1 +
2

1+
1

1

= 1 +
2

2
= 2 

 𝑐3 = 1 +
2

1+
1

1+
1
1

= 1 +
2

1+
1

2

= 1 +
4

3
=

7

3
= 2.3333333 

 𝑐4 = 1 +
2

1+
1

1+
1

1+
1
1

= 1 +
2

1+
2

3

= 1 +
2
5

3

= 1 +
6

5
=

11

5
= 2.2 

          𝑐5 = 1 +
2

1+
3

5

= 1 +
2
8

5

= 1 +
10

8
=

18

8
= 2.25 

 𝑐6 = 1 +
2

1+
5

8

= 1 +
2

13

8

= 1 +
16

13
=

29

13
= 2.230769 

If we now list the convergents obtained above, we get  

List ofconvergents  𝒄𝒏 

n=0,2,4,6,8  (Lower  bounds) n=1,3,5,7 (Upper  bounds) 

𝑐0 = 1 𝑐1 = 3 

𝑐2 = 2 𝑐3 = 2.3333333 

𝑐4 = 2.2 𝑐5 = 2.25 

𝑐6 = 2.230769 𝑐7 = 2.2380952 

𝑐8 = 2.235294 𝑐9 = 2.23636363 

 

Thus the above convergents forming lower and upper bounds respectively eventually converges 

to √5 = 2.2360679. This verifies the result obtained in Theorem 2.  

 

4.2 Corollary 2 

√13 = 3.60555127 

Proof:  Let k = 3. Then√𝑘2 + 4 = √32 + 4 = √13 = 3.60555127 

By (2) of Theorem 1,√32 + 4 = √13 = 3 +
2

3+
1

3+
1

3+
1

3+
1

3+⋯

 

 𝑐0 = 3 
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 𝑐1 = 3 +
2

3
=

11

3
= 3.6666666 

 𝑐2 = 3 +
2

3+
1

3

= 3 +
2

10

3

= 3 +
6

10
=

36

10
= 3.6 

 𝑐3 = 3 +
2

3+
1

3+
1
3

= 3 +
2

3+
3

10

= 3 +
2

33

10

= 3 +
20

33
=

119

33
= 3.606060 

 𝑐4 = 3 +
2

3+
1

3+
1

3+
1
3

= 3 +
2

3+
10

33

= 3 +
2

109

33

= 3 +
66

109
 

=
393

109
= 3.6055045 

If we now list the convergents obtained above, we get  

 

List of convergents  𝒄𝒏 

n=0,2,4,6 (Lower  bounds) n=1,3,5,7 (Upper  bounds) 

𝑐0 = 3 𝑐1 = 3.6666666 

𝑐2 = 3.6 𝑐3 = 3.60606060 

𝑐4 = 3.60550458 𝑐5 = 3.60555555 

𝑐6 = 3.6055508 𝑐7 = 3.60555131 

Thus the above convergents forming lower and upper bounds respectively eventually converges 

to √13 = 3.60555127. This verifies the result obtained in Theorem 2.  

 

4.3 Corollary 3 

√29 = 5.38516480 

Proof:  Let k = 5. Then√𝑘2 + 4 = √52 + 4= √29 = 5.38516480 

 

By (2) of Theorem 1,√52 + 4 = √29 = 5 +
2

5+
1

5+
1

5+
1

5+
1

5+⋯

 

 𝑐0 = 5 

 𝑐1 = 5 +
2

5
= 5.4 

 𝑐2 = 5 +
2

5+
1

5

= 5 +
10

26
= 5.3846153 

 𝑐3 = 5 +
2

5+
1

5+
1
5

= 5 +
2

5+
5

26

= 5 +
52

135
= 5.3851851 

 𝑐4 = 5 +
2

5+
26

135

= 5 +
270

701
= 5.385164051 

            𝑐5 = 5 +
2

5+
135

701

= 5 +
1402

3640
= 5.3851648351 

 𝑐6 = 5 +
2

5+
701

3640

= 5 +
7280

18901
= 5.3851648060 

 

If we now list the convergents obtained above, we get 

List of convergents  𝒄𝒏 

n=0,2,4,6 (Lower  bounds) n=1,3,5,7 (Upper  bounds) 

𝑐0 = 5 𝑐1 = 5.4 
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𝑐2 = 5.3846153 𝑐3 = 5.3851851 

𝑐4 = 5.385164051 𝑐5 = 5.3851648351 

𝑐6 = 5.3851648060 𝑐7 = 5.3851648071 

 

Thus the above convergents forming lower and upper bounds respectively eventually converges 

to √29 = 5.38516480. This verifies the result obtained in Theorem 2.  

 

5. Conclusion  

In this paper, in Theorem 1, we have constructed a continued fraction expansion for a quadratic 

irrational surd √𝑘2 + 4 as in (2). In doing so, we can obtain rational approximations of several 

irrational numbers.In Theorem 2, we proved that the rational approximations which are values 

corresponding to successive convergents of the continued fraction in (2), indeed converges to 

√𝑘2 + 4.The rational approximations of  numbers √𝑘2 + 4 for k = 1, 3, 5 were obtained in corollaries 

1 to 3. By generalizing these kind of computations, we can determine the rational approximations of 

any irrational numbers of the form √𝑛  when n is not a perfect square. 
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